
Davide Cavaliere

www.monocilindro.com

dadez87@gmail.com

11
th

 March 2017

Fuelino Calibration Tool Guide

This guide will explain how to use the Fuelino Calibration Tool.

First of all, connect Fuelino to the PC using a USB cable. Then, in “Device Manager”, you should check

the Serial Port number assigned to Fuelino (Arduino Nano). In my case, it was assigned COM3, as

shown below.

Open the file “settings.cfg” using Notepad (or Notepad++ or similar).

Set the Serial Port number of the previous step (COM3 in my case). Save and exit.

Execute the file “SimpleSerial.exe”. The following screen appears.

Make sure that the Serial Port is correct (COM3 in my case). Then, click on “Connect”. In case the Serial

Port exists, it is not busy, and the tool can correctly reserve it, the message “Connected successfully”

will be shown.

If you want to make sure that the communication with Fuelino properly works, click on “Start Polling”.

The tool will start showing the data acquired in real time, such as the Time[ms] from last Power On. In

case you see that the time is properly updated, it means that the serial connection with Fuelino is

properly working (i.e. the tool can read data from Fuelino, in real time). In case it is not working, try to

push the “reset” button on the Arduino Nano.

If you want to read the Calibration maps values stored in Arduino, first of all stop polling. You should at

first click on “Stop Polling”. Then, click on “Read All”. The tool is reading the values of the calibration

maps stored inside Fuelino. On the left side, you can see the raw messages received from Fuelino.

On the right side, you can check the calibration values of each map and index.

There are 2 maps:

• Incrementi_rpm[], “map 0

increment (%), in terms of injection time pe

There are 8 breakpoints (rpm) which are defined inside the source file

• Incrementi_thr[], “map 1”

increment (%), in terms of injection time pe

throttle voltage acquired goes from 0V to 5V.

corresponds to a voltage equal to (5V/8)*index.

The injection time extension is calcul

values of engine speed (rpm) and throttle position se

increment calibrated in the map. The total increment programmed is the sum of the 2 in

(increment depending on rpm, plus increment depending on throttle). If you are not using the throttle

signal, you should set the calibration

For rpm and throttle values between 2 breakpoints, Fuelino performs the

calculate the proper extension percentage

map 0”. 8 values (index 0-7). This 1-D map defines the percentage of

increment (%), in terms of injection time percentage, depending on the engine speed (rpm).

There are 8 breakpoints (rpm) which are defined inside the source file

”. 8 values (index 0-7). This 1-D map defines the percentage of

increment (%), in terms of injection time percentage, depending on the

goes from 0V to 5V. There are 8 breakpoints (index 0

voltage equal to (5V/8)*index.

The injection time extension is calculated based on the following logic. At first, Fuelino checks the

values of engine speed (rpm) and throttle position sensor (V). Then, for each signal

calibrated in the map. The total increment programmed is the sum of the 2 in

(increment depending on rpm, plus increment depending on throttle). If you are not using the throttle

signal, you should set the calibration values of “map 1” indexes to 0.

For rpm and throttle values between 2 breakpoints, Fuelino performs the “linear interpolation

calculate the proper extension percentage (see Appendix).

D map defines the percentage of

rcentage, depending on the engine speed (rpm).

There are 8 breakpoints (rpm) which are defined inside the source file “INJmgr.cpp”.

D map defines the percentage of

rcentage, depending on the throttle voltage (V). The

There are 8 breakpoints (index 0-7). Each one

ated based on the following logic. At first, Fuelino checks the

nsor (V). Then, for each signal, checks which is the

calibrated in the map. The total increment programmed is the sum of the 2 increments

(increment depending on rpm, plus increment depending on throttle). If you are not using the throttle

linear interpolation” to

How to calibrate the maps

In order to set a desired increment percentage, you select a Map, and the Index that you want to

modify. Then, write the Increment [%]. Please notice that the increment should be within “0” and “49.9”

[%]. Then, click on “Write RAM” button.

Fuelino uses 1 byte to encode each increment value. Therefore, the value can be from 0 to 255. “256”

would correspond to an increment of 50%. Since, in the example above, I wrote “45” %, the tool

calculated a raw value of “230”, which corresponds to a practical increment of “44.921875” %. This is

the value which is actually used by Fuelino. On the left side, Fuelino replied “c1004230”. This raw

message means that Fuelino properly set the calibration (“c”). Fuelino set (“1”) the Map 0 (“0”) Index 4

(“04”) to 44.921875% (“230”).

How to save the calibrated values into EEPROM

Please notice that when clicking to “Write RAM”, the calibration value is at first stored into RAM

memory (volatile memory) and not in EEPROM (permanent memory). The reason why it is not

suddenly written into permanent memory (EEPROM) is that, EEPROM memory cannot be written

infinite times. After writing it some thousands of times, the memory corrupts. For this reason, the

maps are at first saved into RAM memory. This allows you to test new calibrations at the fly (in run

time). But in case you turn OFF the Fuelino (Power Off), all calibration will be lost. Therefore, if you

want to keep your calibration values even after Power Off, make sure that you click “Write EE” after

having calibrated all your maps.

In other words, you should at first save your calibration on the RAM memory (“Write RAM”) as

explained on the previous chapter. After performing all changes, you should click on “Write EE”.

Basically, when running this command, Fuelino copies the content of the RAM calibrations and saves it

into the EEPROM memory, so that the same calibration maps will be available also at the next Power

On.

Calibration maps: standard values

Fuelino calibration maps are saved into EEPROM memory. In order to be safe against data corruption,

Fuelino is using “redundancy”, which means that the same maps are saved 2 times. At each Power On,

Fuelino loads calibration maps from the EEPROM, and performs a checksum check to determine if the

data is reliable. In case of no reliability (checksum check fails), Fuelino writes the standard values in the

EEPROM. These values are defined as “INJ_INCREMENT_RPM_STD” and “INJ_INCREMENT_THR_STD”

inside the C++ source code file “INJmgr.h”.

You can also manually write these standard values into EEPROM, by clicking on “Write Std” button.

In latest SW, the standard values are as following:

Appendix 1: Example of Map 0 calibration (incrementi_rpm[])

The following picture shows an example of calibrated Map 0 (increment % depending on engine speed

rpm), in which I calibrated the 8 indexes with the following values [%]:

0. 20

1. 22

2. 24

3. 26

4. 28

5. 28

6. 30

7. 28

The theoretical increments are shown as red points in the image below. The blue circles are the

measured points. They have been measured using a validation tool (Pico DrDaq). As shown in the

picture below, Fuelino uses interpolation to calculate the injection % to be used, between 2

breakpoints (blue line between 2 red points).

