Davide Cavaliere
www.monocilindro.com
dadez87@gmail.com
27" October 2016

Fuelino service commands guide V1.1

1 Introduction
This guide is aligned with Fuelino software version 1.0 betal. It has the purpose to explain how to communicate
with Fuelino, using Serial communication, to send service commands.
Service commands have the purpose of:
e reading/writing directly the microcontroller (Atmel Atmega328P) EEPROM memory
e reading/writing the calibration maps values, on RAM (temporary) or EEPROM (permanent) memory
e reading real time data, such as: engine rotation speed (time difference between 2 injections), injection
time, throttle position sensor signal value, time after power ON, interrupts execution time, and so on.

2 System Layout

The following image shows the pinout of Fuelino.

Ground
(chassis, vehicle
frame)

Injector
command
(Injector +)

Throttle

Position

Sensor
(TPS)

Original ECU
injector
command
(Injector - minus,
before
installation)

3 Service commands:general explanations and syntax

In order to send service commands to Fuelino, a serial communication must be previously established, at 57600
baud, as shown in the picture below. Communication can be extablished using RealTerm, or Arduino IDE “Serial
Monitor”, or any other program which allows to send messages through serial communication.

S RealTerm: Serial Capture Program 2.0.0.70 = H| X
]
L
Display Port | Capture | Pins | Gend | EchoPort] 120 | 1202 | 120Mise | Mise | An| Clear| Freeze| 7|
Status
Baud [0 <] pon 5 =1 [oren sl [e
: : : “Software Flow Caontrol —
Parity |~ Data Bitz) Stop Bitz [Diacenin o 17 | T=D (3]
 Nore | @ gbis|| & 1ht O 2his Rosis: Koh Chat CTS [8)
0 e ! : |
~ Excfledn 'ﬁ 7Btz | —Hardware Flow Control [Transmit Xoff Char. |13 _|DED M
{ Mark . B [6e. o L Rlmnls Wingock iz _|D3R[E]
" Space || © Bbits| | " DTR/DSR " R54854ts ~ Baw | Ring [9]
: (s Telnet _|BREAK,
_|Error
Char Count:0 CPS:0 Port: @ 57600 28N1 None
Each service command sent from service tool (PC) to the Fuelino, via USB cable (Serial communication), is
composed by 8 ASCII characters (1 ASCII character = 1 byte) plus a final “line feed” or “line return” ASCII
character.
Byte 1 Byte 2 Byte 3 Byte 4 Byte 5 Byte 6 Byte 7 Byte 8 End byte
e or ‘I or‘/n’
‘c’ or
Idl

As a consequence, a single service command has a size of 9 bytes.
The first byte corresponds to the command type:
e “e” = EEPROM read/write direct access command
e “c” =Calibration maps values read/write command
e “d” = Data reading command (real time measurements)
Fuelino will reply with a message:
e In case of a read request, Fuelino will reply with the read value
e In case of a write request, Fuelino will reply with an echo response (same format as the command)

In case “#define COMM_ENABLE _CHECKSUM" is set to “1” (it is “0” as standard), all messages sent from Fuelino
have, at the end, 2 binary bytes which correspond to the checksum calculated on all message bytes (except for
the checksum itself). This checksum can be used to verify that no error happened during the bytes transmission.

3.1 EEPROM direct access command

The following command can be used to read/write directly the EEPROM memory addresses, with a limitation to
the first 256 bytes.

Byte 1 Byte 2 Byte3 |Byte4 | Bytes Byte6 |Byte7 [Byte8 End byte
‘e’ ‘0O’ =read | EEPROM memory address EEPROM data ‘It or ‘I’
‘1’ = write | [000 : 255] Read case: 000
Write case: 000 : 255

3.2 Calibration maps access command

There are 3 maps in total, which can be accessed using a“map number” from 0 to 2. Each map (1-D array) has a
specific number of values, which can be read (byte 1 = ‘0’) or written.

In case any index of a map is written on RAM memory (byte 2 ="1’), Fuelino will suddenly use this new value;
however, if a power OFF or a microcontroller reset happens, this value is lost, and at next power ON, the
microcontroller will load the values stored in EEPROM memory.

For this reason, writing values on RAM memory is useful if you want to test some new calibration settings
without having impact on EEPROM permanent memory, such as if you want to do some temporary tests and
then come back to the initial settings at next power ON.

However, if you notice that your temporary calibration settings are working pretty well, and you want to save
them permanently on the EEPROM memory, you need to do it with EEPROM writing command (byte 2 = ‘2’).
This command will store your temporary map from RAM to EEPROM (permanent memory).

Byte 1 Byte 2 Byte 3 Byte4 | Bytes Byte6 |Byte7 [Byte8 End byte
‘c ‘O’=read | Map Index Value ‘It or ‘/n’
‘1’ = write | number [00 : (map_size - 1)] [000 : 255]
RAM [0:3]
2’ = write
EEPROM

In Fuelino software, there are 3 maps which define the injection time increase (in percentage), depending on
different conditions:

e incrementi_rpm[]. Map number 0. This array has INJ_INCR_RPM_MAPS_SIZE=8 values. Each one defines
the injection time increment (0=0%, 255=49.8%) depending on engine rotation speed (rpm).

e incrementi_thr[]. Map number 1. This array has INJ_INCR_THR_MAPS_SIZE=16 values. Each one defines
the injection time increment (0=0%, 255=49.8%) depending on throttle position sensor signal (%).

e incrementi_tim[]. Map number 2. This array has INJ_INCR_TIM_MAPS_SIZE=8 values. Each one defines
the injection time increment (0=0%, 255=49.8%) depending on original injection time (micro seconds,
us). Currently, this map is not used.

The total injection time increase percentage is calculated as the sum of the 3 maps described above. In order to
calculate the injection time increment, in microseconds, the microcontroller multiplies the original injection time
coming from original ECU, by the injection time increase percentage, which is the sum of the values read in each
map.

3.2.1 Example 1: reading the calibration value of a specific map

The following example shows how to read the calibrated values, inside RAM memory, of a specific map, at a
specific index.

Byte 1 Byte 2 Byte 3 Byte 4 Byte 5 Byte 6 Byte 7 | Byte 8 End byte
Calibration | Read/Write | Map Index Value ‘I or ‘/n’
‘c ‘0’ =read number “02” 000

IOI

As shown below, the microcontroller replies (3™ line) that map 0 index 2 is equal to 100 (incrementi_rpm|[2] =
100). A value of 100 corresponds to about 19.53% (256 = 50%).

By RealTerm: Serial Capture Program 2.0.0.70 — O x
cBAB21 80l A

L
Display | Part | Capture| Pins~ Send | EchoPort| 120 | 1202 | 120Mise | Mise | An| Clear| Freeze| 7|
Statuz
- —EOL y
c0082000 =] Send Numbe,$| [| Connected
= : i [Before :
w0 _|R®D [2)
]| 5end Ngml:uers| Send ASCII ||': +CR THD (3]

|
+LF
ﬂﬂﬂ Repeats |1 :|¢ [Literal [Stip Spaces 18- MMBUS 8 :I _ICTS 8]

_|DCD M

Diump File to Port |DSE [E]
|u::'xlemp'u:apture.txt ﬂJ SendEiIe| x Stu:.g| Delayz |0 2|0 = _|Ring (9]
........... __|BREAK

Bepeats |'I ﬂ |E| ﬂ | Errar

You can use ActiveX automation to control mel! Char Count:18 CPS:0 Port: 3 57600 8M1 Mone

3.2.2 Example 2: writing the calibration value of a specific map

This example is dual to the previous one. Map 0, index 0O, is set to 50 (incrementi_rpm[0] = 50).
50 correspons to a percentage of increase of about 9.77% (256 would be 50%).

Byte 1 Byte 2 Byte 3 Byte 4 | Byte 5 Byte 6 | Byte 7 | Byte 8 End byte
Calibration | Read/Write | Map Index Value ‘I or ‘/n’
‘c ‘1" = write number “00” 050

RAM ‘0

Fuelino replies with an echo message, including 2 bytes of “checksum”.
Please notice that this writing operation affects RAM memory, and not EEPROM memory, therefore a power
OFF will delete the change. In order to store map 0 on the EEPROM memory, command “c2000001” must be
sent. Alternatively, command “c2300001” will save all maps on the EEPROM.

&8 RealTerm: Serial Capture Program 2.0.0.70
c1B8680a5aLF

Displa_l,l] Part l Eapture] PFirg

|-:: 18868858

ﬂ Send ﬂuml:uers|

i

|
I_ﬁﬂﬂ Fepeats |1 =

Dwrnp File to Port

-

=1 Eend Ngml:uers| Send ASCII ||':

[Literal

||:: Wemphocaptune. bt

[Ship Spaces ||

Send | EchoPort| 120 | 1202 | 120Mise | Mise |

EOL

+CR
+LF
+CR
+LF
+0IC

b

[~ Before
[After

SMBUS &

=] | sendEie | ¢ sp| Demsfo [0 2

Repeatz |'I

= o

=

W
An| Clear| Freeze| 7|

Status

| Connected
_ | R=D (2
I THD 3]
_|CTS (8]
_|DCD M)
__|DSR [B)
_|Ring[9]
__ | BREAE,

| Emrar

Char Count:18

CP3:0

Port: 3 57600 8M1 Mone

3.2.3 Example 3: save calibration maps into EEPROM permanent memory

e |n order to save permanently map number “n” into EEPROM permanent memory, use the command:
“c2n00001” (example, for map 2, send “c2200001”).
e In order to save permanently all maps into EEPROM permanent memory, use the command: “c2300001".

S RealTerm: Serial Capture Program 2.0.0.70 — O x
c 230081 L A

L")
Display | Port | Capture| Pins ~ Send | EchoPort| 120 | 1202 | 120Mise | Mise | An| Clear| Freeze| |
Statuz
EOL - :
lc23600081 | Send ﬂumber3| W 0B | | pet _ | Connected
erare 1
o _IRXD 2]
|] Send Ngml:uers| Send ASCI |F £ &l TR (3]
l_ + I—_I |
ﬂ ﬂﬂ Repeats |1 = [Literal [Stip Spaces [1f - ISMBUS 8 _g'll':% [[?l]]
Dumnp File to Part DR (6]
||::'xlemp'u:apture.tnt ﬂ J Send File | x Stop | Delapz |0 510 = _ |Ring 9]
_ |BREAK

Bepeats |‘I ﬂ |E| ﬂ _ | Emar

You can use ActiveX automation to control me! Char Count:18 CPs:0 Port: 3 57600 8M1 Mone

3.2.4 Example 4: restore standard values for a given map

For a given map number “n”, standard values can be restored using the command “c2n00000”. For example, in
case you would like to restore standard values for map number 0, you should send “c2000000".

If you would like to store standard values for all maps, you should send “c2300000” (‘3’ means “all maps”).

When maps values are restored, the following standard values are written for all indexes of each map:
e #define INJ_INCREMENT_RPM_STD (uint8_t)100 // Injection increment standard (%)
e #define INJ_INCREMENT_THR_STD (uint8_t)0 // Injection increment standard (%)
e #define INJ_INCREMENT_TIM_STD (uint8_t)0 // Injection increment standard (%)

Bw RealTerm: Serial Capture Program 2.0.0.70 — O x
c23A0BHALF ~

W
Display | Port | Capture| Pins ~ Send | EchoPort| 120 | 120:2 | 120Mise | Misc | An| Clear| Freeze| 7|

EOL = Statuz
lc2308000 =] 5end ﬂumber3| il +cr | Cormected
i [Befare -
[+LF AR _|R=D (2
| =1 serd Ngml:uers| Send ASCI |F R 4 | TXD [3)
+ }
ﬂﬂﬁ Repeats |1 = [~ Literal [Strip Spaces || +ere el :| _- EE%[[?]]
Durnp File bo Port :- DSF (6]
|c:'xlemp'xu:apture.tnt ﬂ J Send File | x 5tDE| Delayz |0 =(I0 = _|Ring [9]
........... __|BREAK

RBepeats |'I ﬂ |E| ﬂ _|Emrar

You can use ActiveX automation to control mel! Char Count: 18 CPs:0 Port: 3 57600 8M1 Mone

3.3 Measurements data reading command

Real time measurements data, in binary format, can be read using the command “d1000000”. Practically, all
command sizes between 4 bytes (“d100”) and 8 bytes (“d1000000”) are accepted.

Byte 1

Byte 2 Byte 3 Byte 4 Byte 5 Byte 6 Byte 7 Byte 8 End byte

Idl

Ill IOI IOI IOI IOI IOI IOI l/rl or l/nl

The microcontroller replies with 20 bytes data, as following. Each field has little endian format.

Message type, 1 byte, ‘d’ (ASCII 0x64)

Message type, 1 byte, ‘1’ (ASCII 0x31)

Time, in milliseconds, since Power ON or reset, 4 bytes

Injections counter, 2 bytes

Time between consecutive injections (=2 engine rotations), 2 bytes, 1 bit = 4 us
Injection time from original ECU, 2 bytes, 1 bit = 4us

Throttle position sensor signal, 2 bytes, 0=0V and 1023 =5V

Lambda sensor signal, 2 bytes, 0=0V and 1023 = 5V [valid only in Fuelino V2]
Extension time ticks, 2 bytes, 1 bit = 0.5 us

Injector ON interrupt time, 2 bytes, 1 bit = 4us

Injector OFF interrupt time, 2 bytes, 1 bit = 4us

Checksum, 2 bytes

It is also possible to read single information data in ASCII format, using the following command. Also in this case,
the size accepted is between 4 (“dOxy”) and 8 (“d0Oxy0000”).

Byte 1

Byte 2 Byte 3 Byte 4 Byte 5 Byte 6 Byte 7 Byte 8 End byte

ldl

lol X y lol lol lol lol l/rl or l/nl

The information type is determined by the information number (2 characters, xy):

Number | Type Resolution

0 Distance between 2 injections = 2 engines rotations 4 us

1 Injection time 4us

2 Extension time 0.5us

3 Throttle sensor 0=0V, 1023=5V
4 Lambda sensor [not valid on Fuelino V1] 0=0V, 1023=5V
5 Combustion counter 1 combustion

3.3.1 Example: read real time data in binary format

&§ RealTerm: Serial Capture Program 2.0.0.70 — O *

64 31 75 41 B8 0@ AS B8 9C 61 EE B4 BE 83 €8 83 DC @7 6 B8 B6 B0 54 C2 A

Display | Part | Captue | Pins ~ Send | EchoPart] 128 | 1202 | 12CMise | Misc | An| Clear| Freeze| ?|

" Status
- |
41008 = | Send Mumbers Before - Cannected
I A _|R=D 2]
| = Send Ngmbers| Send A5ClI | F o ! “IT*D @)
,_ & — A |CTS (8
ﬂ ﬂﬂ Repeats |1 % [~ Literal I Stip Spaces |[+oic =hiBhs s _EDCD[['I]]
Drnp File to Port | DSF (6]
|c:\temp\capture.t:-:t ﬂ J Send File x Stap Delaps |0 4|0 = _ |Ring (9
___________ _ | BREAK
Repeats W m _|Emar
You can use ActiveX autemation to control me! Char Count:24 CP%0 Port: 4 57600 8M1 None

The following picture shows the message received from Fuelino, when it is fed with 10Hz, 5% duty cycle
injection input pulses, which means that the distance between injections is 100 milliseconds, and the injection
time is 5 milliseconds.

e Distance between injection is 0x619C = 24988 ticks = 99952us (1 tick = 4us)

e QOriginal ECU injection time is OxO4EE = 1262 ticks = 5048us (1 tick = 4us)
Since the injection percentage increment is set to 128 (25%), the injector signal output by Fuelino is increased.

The oscilloscope (Pico DrDaq) measures pulses of 6.330ms.
%

Eile Edit Views Measurements Tools Help

BT[] 2 B e &)1 S 05 B[Wwom) ONGS NS OS]

ounal-| oo [iuaaal]fonms - ot F-Jrem [-Juigne Pl(ew s Fona Flloes)| i & %

RealTerm: Serial Capture Program 2.0.0.70 = a X
P £l

] Signal On Arbitrary (4]

Arbitrary...

Frequency 10Hz

Amplitude (Peak] | 1y

Offset ov

Display | Port | Capture| Pins Send |EchoPon| 12 | 1202 | 12CMisc | Wisc | An| Clear| Freere| 7|
EOL- T Status
d1888 | Send Numbers| |{ Sand A5TI Y|V +CR | Bannected
L) FEATRE [+LF ; o IR0 @
[| Send Numbers| Send A5CI F+E§ il _ITAD (3
— of~ = el TR IcTS @
0] 72| LF] Repeas [T = [Lieal [Stip Spaces |[+oic| [SMBUSE ‘1DED[[1]]
Dump File 1o Fort ISR B
[Memphaaptune b = | J SendEile | % Stop| Dets[0 2J[0 = “IRina(®)
_IBREAK
Repeats [1 2] [0 = "JEnor
Char Count:24 CPs0 Port: 4 57600 8N1 None
250
-20 2 4. 6. 8. 104 12 14, 16.

Running |G} @ | Trigger Repeat [v] 1if| [scope [+] | 4 [ogl| [s00mv || 0%

e
&

Measurements [[E [0 | Rulers [Notes [

3.3.2 Example: read real time data in ASCII format

Fuelino is fed with 20Hz, 5% duty cycle input. “d000” replies with “12492” ticks (about 50000us).
This is the time between 2 injections (2 engine rotations).

B RealTerm: Serial Capture Pragram 2.0.0.70 — O X

dBPA12492LF

} v
{ Display| Port | Capture | Pins Send | EchoPart| 120 | 1202 | 120Mise | Mise | An| Clear] Freeze| 7|
Statug
| EOL i -
| |d.BBB ﬂ Sendﬂumbers| ¢ +CR — Before _ Connected
[+LF v AR _|R=D (2]
|] Send Numbers| Send ASCl |,|: *CR = T3]
- - i _|CT5 (8]
ﬂ ﬂ E Repeats |1 = [Literal [Strip Spaces [vere | |SMBUS 8 |DCD (1]
Dumnp File to Port : DSF (6]
| g o apture. bt | J SendFile | 3 Stop | Delays |0 S0 = _|Ring[d]
___________ _ |EREAK
| Bepeats W m | Emar

Char Count:20 CPS:0 Port: 4 57600 8N1 None

“d001” replies with “628” (about 2500us). This is the input injection time.

B RealTerm: Serial Capture Program 2.0.0.70 — O *
~
dBE1BB628 L
v
Displap | Port | Captwe | Pins ~ Send | EchoPort| 126 | 1202 | 12CMise | Miss | An| Clear| Freeze| ?|
EnL " Status
|apa1 | Send Numbers| |{§end v +CR | Connected
I oLF ,': i;f”e _|RD (@)
| =] Send Ngmbers| Send ASCI |F o el T3
B =) _ICTS (8]
ﬂ ﬂﬂ Repeats |1 ¥ [~ Literal [Stip Spaces [+erg| |SMBUS 8 |DCD (1]
Drnp File to Port _; DSF (6]
|c:Mempcapture. b | J SendFile | 3 Stop | Delaws |0 50 5 _|Ring (3)
" |BREAK
Hepeats W m _|Error
You can use ActiveX autemation to control me! Char Count:20 CP5:0 Port: 4 57600 8M1 Mone
“d002” replies with “1256” (about 625us). This is the injection extension time.
Bl RealTerm: Serial Capture Program 2.0.0.70 — O *
A
v
Display | Part | Captue | Pins ~ Send | EchoPart] 128 | 1202 | 12CMise | Misc | An| Clear| Freeze| ?|
EOL " Status
|danz = | Send Mumbers ¥ +CR _ | Cannected
[P i;f”e _IR=D (21
= Send Ngmbers| Send A5ClI |F SR [Alter “IT*D @)

|
+LF I—_| |
ﬂ ﬂﬂ Repeats |1 % [~ Literal I Stip Spaces |[+oic =hiBhs s B

_|DCD 1]

Drnp File to Port | DSF (6]
|c:\temp\capture.t:-:t ﬂJ Send File x Stap Delaps |0 4|0 = _ |Ring (9
___________ _ | BREAK

Bepeats (1 %] |0 - _ |Emar

Char Count:20 CP%0 Port: 4 57600 8M1 None

4 Appendix

4.1 Appendix 1: “incrementi_rpm|[]” map breakpoints
The relation between map 0 indexes (from 0 to 7) and rpm breakpoints is visible below.

As an example, index 0 corresponds to 12000 rpm. Index 7 corresponds to 1588.6 rpm.

Inside software, Fuelino breakpoints are not using rpm. Instead, the time ticks between one injection and the
following (2 engine rotations) is used. The difference between one breakpoint and the following is a power of 2.
These constraints have been used, in the software, because they reduce the computation time needed for
interpolation process, which includes multiplication, sum, and division (since ATmega328P ALU does not support

HW division, | used power of 2, so that the division can be simplified as bits shifting).

hndex

8]
1

i
3
4
5
]
7

These breakpoints can be modified by changing the software array called incrementi_rpm_brkpts|].

Fpm

12000
10885 .34
2960155
8513.053
G596 305
4548211
2805536
15688 645

Hz

100
a0 71118
g§3.00133
T054211
54 85922
3780178
23.38187
1323872

1 0000
11024
120445
14085
18192
26384
427468
7BE3G

Tirme [us] Ticks

2500
2758
Jmz
3524
45485
G584
10582
186884

2508
2508
"z
1024
2045
4085
81892

g

g

3
10
11
12
14

4.2 Appendix 2: “incrementi_thr[]” map breakpoints
The relation between map 1 indexes (from 0 to 15) and throttle % breakpoints is as following.

Throttle sensor signal (0 = 0V, 1023 = 5V) is converted into the map index by performing a division by 64 (6 bits
shifting to the right). Doing so, OV corresponds to index 0, while 5V corresponds to index 15.

4.3 Appendix 3: “incrementi_tim[]” map breakpoints
Not used at the moment.

